

V Semester B.A./B.Sc. Examination, Nov./Dec. 2018 (Semester Scheme) (Fresh + Repeaters) (CBCS) (2016-17 and Onwards) Mathematics MATHEMATICS – V

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART - A

1. Answer any five questions:

 $(5 \times 2 = 10)$

- a) In a ring $(R, +, \cdot)$, show that $a \cdot (-b) = (-a) \cdot b = -(a \cdot b) \ \forall a, b, \in R$.
- b) Define subring of a ring and give an example.
- c) Show that the set of even integers is an ideal of the ring of integers.
- d) Find the unit normal vector to the surface $(x 1)^2 + y^2 + (z + 2)^2 = 9$ at (3, 1, -4).
- e) If $\phi = 2x^3y^2z^4$, then find $\nabla \phi$.
- f) Write the Newton's divided difference interpolation formula.
- g) Evaluate $\Delta^{10} (1 ax)(1 bx^2) (1 cx^3) (1 dx^4)$.
- h) State the Trapezoidal rule for the integral $\int_{a}^{b} f(x)dx$.

PART - B

Answer two full questions.

 $(2\times10=20)$

- a) Prove that the intersection of any two subrings is a subring. Give an example to show that the union of two subrings of a ring need not be a subring.
 - b) Prove that $(z_5, +_5, \times_5)$ is a ring w.r.t. $+_5$ and \times_5 .

OR

- 3. a) Prove that every field is an integral domain.
 - b) Show that the set of all real numbers of the form $a+b\sqrt{2}$, where a and b are integers is a ring w.r.to addition and multiplication. P.T.O.

- a) If f: R → R' be a homomorphism and onto then prove that f is one-one iff, Ker f = {0}.
 - b) Prove that the set $S = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \middle/ a, b \in z \right\}$ of all 2×2 matrices is a left ideal of the ring R over Z. Also show that S is not a right ideal.

OR

- a) State and prove fundamental theorem of homomorphism of rings.
 - b) Find all the principal ideals of the ring R = $\{0, 1, 2, 3, 4, 5, 6, 7\}$ w.r.to $+_{8}$ and \times_{8} .

PART - C

Answer two full questions:

 $(2 \times 10 = 20)$

- 6. a) Find the directional derivative of $\phi(x, y, z) = x^2 y^2 + 4z^2$ at the point (1, 1, -8) in the direction of $2\hat{i} + \hat{j} \hat{k}$.
 - b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z = 3$ at the point (2, -1, 2).

OR

- 7. a) Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$, where n is a non-zero constant. Also deduce that r^n is harmonic if n = -1.
 - b) If the vector $\vec{F} = (ax + 3y + 4z)\hat{i} + (x 2y + 3z)\hat{j} + (3x + 2y z)\hat{k}$ is solenoidal, then find a.
- 8. a) If ϕ is a scalar point function and \vec{F} is a vector point function. Then prove that $div(\phi\vec{F}) = \phi(div\vec{F}) + \nabla\phi \cdot \vec{F}$.
 - b) Show that $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational. Find ϕ such that $\vec{F} = \nabla \phi$.

OR

- 9. a) Prove that:
 - i) Curl F is solenoidal.
 - ii) Grad φ is irrotational.
 - b) Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r}f'(r)$ where $r^2 = x^2 + y^2 + z^2$.

PART - D

Answer two full questions.

(2×10=20)

10. a) By the separation of symbols, prove that

$$u_0 + \frac{u_1}{1!} + \frac{u_2 x^2}{2!} + ... \infty = e^x \left[u_0 + \frac{x \Delta u_0}{1!} + \frac{x^2 \Delta^2 u_0}{2!} + ... \infty \right]$$

b) Obtain the function whose first difference is $6x^2 + 10x + 11$.

OR

11. a) From the following data find ' θ ' at x = 84 using difference table.

х			60		80	90
θ	184	204	226	250	276	304

- b) Express $3x^3 4x^2 + 3x 11$ in factorial notation. Also express its successive differences in factorial notation.
- 12. a) Prepare divided difference table for the following data.

X	1	3	4	6	10
f(x)	0	18	58	190	920

- b) Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$, by using Simpson's $\frac{3}{8}^{th}$ rule.
- 13. a) By using Lagrange interpolation formula find f(10) from the following data.

х	5	6	9	11	
f(x)	12	13	14	16	

b) Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub intervals, by using Simpson's $\frac{1}{3}^{rd}$ rule.